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ABSTRACT 
To study the fluid structure interaction with large structural 

deformation, a fixed point method with Aitken's dynamic 

relaxation is used to accelerate convergence of the coupling 

iteration, and geometrically exact approach proposed by Simo is 

adopted to simulate the geometrically nonlinear dynamics of 

flexible beams. In order to reduce the error of the computation 

of structural dynamics, an improved implicit time integration 

algorithm based on Simo-Newmark method is presented. The 

case of vortex induced vibration of a cantilever is computed to 

verify the applicability of the approach based on geometrically 

exact beam theory and the efficiency of the fixed-point method 

is discussed. 

 

INTRODUCTION 
Fluid structure interaction (FSI) problems involve the interaction 

between fluid forces and structural responses and are 

encountered in many engineering problems, especially in 

aeroelasticity. With the growth of interest in high-altitude, long-

endurance (HALE) aircraft , new methods need to be developed 

to study the aeroelastic behavior of high aspect ratio wings. In 

the FSI computation of aeroelastic problems, there are two main 

kinds of coupling methods: the monolithic approach and the 

partition approach. Because of its flexibility of choosing 

different solvers, the partition method is favored in current 

computational aeroelastic researches. A possible partitioning 

strategy that enables the reuse of existing solvers is the Dirichlet-

Neumann partitioning [1]. There are two ways of partition 

approach: loose coupling and strong coupling. Loose coupling is 

easy to implement and widely used in many literatures [2-4]. 

However, it generates an error at each time step. Farhat and 

Lesoinne [5] proposed two improved loose coupling algorithms 

with second-order accuracy in time. In most researches on 

aeroelasticity, the motion of structure is governed by linear 

modal equations. However, for the structures with large 

deformation, nonlinear dynamic equations should be used to 

describe their motion. To simulate the FSI coupling between 

fluid and flexible structure, a strong coupling method is called 

Block-Gauss-Seidel or fixed-point method can be employed. 

This method is widely used in researches on incompressible flow 

and structures with large deformation [6-9].  

As for the computation of the geometrically nonlinear structure 

of high aspect ratio wings, the geometrically exact intrinsic beam 

model proposed by Hodges [10] is widely used in aeroelasticity. 

However, the shortcoming of this method is: as the number of 

discrete nodes increases, the number of independent variables 

increases exponentially, furthermore the set of equations become 

stiff and lead to low efficiency in numerical calculation. In this 

paper, the geometrically exact beam model proposed by Simo 

[11] is adopted to simulate the nonlinear structural dynamics. 

The organization of this paper is as follows: Section II describes 

the FSI coupling system, and discusses the fixed-point method 
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with dynamic Aitken's relaxation. Section III gives an 

introduction to geometrically exact beam theory  to study the 

geometrically nonlinear dynamics of slender structures. Section 

IV computes the problem of the vortex induced vibration of a 

flexible cantilever to verify the application of geometrically 

exact beam model in FSI simulation. And different coupling 

strategies are also compared. 

DESCRIPTIONS OF COUPLING SYSTEM 
To use the partition method, the FSI system could be regarded as 

a domain consisting of non-overlapping fluid and structural 

domains. A Dirichlet-to-Neumann nonlinear operator 

associating fluid displacements fu  and tractions fλ  on the 

interface is defined as 

( )f fFλ u               (1) 

This is also called Steklov-Poincare operator. It represents the 

process of mesh deformation and computation of flow field. 

Similarly, a Steklove-Poincare operator relating structure 

displacements su  to tractions sλ  on the interface for the 

structural domain is defined by 

( )λs sS u                 (2) 

The inverse operator of S is defined to map the interface tractions 

to displacements for the structure 
1( ) λus sS               (3) 

The interface matching is subject to two mechanics principles: 

f s

f s

on

0 on


  

  λ λ

u u u ,

,
        (4) 

The fluid tractions is computed by 

    λ n n
f f f

P        (5) 

where P is the fluid pressure,  is the viscid stress and fn is 

normal vector on the fluid interface. Put Eq. (1) and Eq. (2) into 

(4), we can get  

  0  ( ) ,
f s

F S onu u           (6)                

we rewrite Eq. (6) as the form of Steklove-Poincare equation 

  0
 
 ( )F Su u            (7) 

Apply the inverse operator S-1 to this equation  

 1S F

 
  ( )u u           (8) 

Define an operator  1g S F  , and Eq. 8 is 

transformed into the fixed-point formulation 

 g
 
u u                 (9) 

Thus the FSI iterations is expressed as the course of finding 

the solution u  of the nonlinear Eq. (9) defined on  .  

Time coupling 

Once the partition approach is employed, there are two possible 

strategies for time coupling. The loose coupling or Conventional 

Serial Staggered method (CSS) [5] is widely used in FSI 

problems, For each time step, the Dirichlet-to-Neumann operator 

F and Neumann-to-Dirichlet operator S-1 are performed only 

once. 

A prediction [12] of structure displacements is adopted at the 

beginning of the computation to improve the stability and 

accuracy. This method is called Generalized Serial Staggered 

(GSS). The predictor is defined by 

   1

0 1

n n n n nP t t  

         u u u u u (10) 

whereThe prediction is first-order time-accurate if 
0

 = 1, and 

second-order time-accurate if 0 = 1 and 1 =1/2.  

And the stability of these schemes highly depends on the 

density ratio s f   and the compressibility of the flow. To 

avoid this disadvantage, the strong coupling called fixed point 

method is suggested. The procedure of the fixed-point method is 

described in Algorithm 1, here k is the sub-iteration times. 

Algorithm 1 Fixed-point method with relaxation 

Data: start and end time (t0,t,max), time step t and initial 

interface displacement 0

u  

while 
maxt t  do 

Predict displacements: 1

, ( )n n

p P

 u u  

k=0 

while 
maxk k  do 

       FSI iteration: 1 1

, ,( )n n

k kg 

 u u   

Compute interface residual: 1 1 1

, ,

n n n

k k kr   

  u u  

Update the interface displacements 1 1 1

, 1 ,

n n n

k k k kr  

   u u  

        if 1n

kr TOL  then 

           Break 

        else 

            k=k+1 

        end 

end 
, 1   t t t n n  

end  

GEOMETRICALLY EXACT BEAM THEORY 
To analyze the geometrically nonlinear dynamic motion of 

slender flexible structures, a suite of code based on geometrically 

exact beam theory has been developed by the authors [13, 14].  

The configuration of a beam is described by defining a family of 

cross-sections the centroids of which are connected by a curve 

which is referred as the centerline of the beam. The space curve 

φ(S) is used to describe the centerline. The cross-sectional plane 

is defined by a triad of orthonormal basis  
3

1i i
d which are 

attached to the cross-section and referred to as moving frame. 

The normal vector d3, as illustrated in Fig. 1. 
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FIGURE 1: Initial and deformed configurations of the beam 

Governing Equations 

Let n(S) and m(s) denote the resultant force and resultant 

moment respectively, acting on the cross-section at S. Let 

 n S  and  m S  denote the prescribed body force and 

moment per unit of the reference length. Let p(S) and   S  

be linear momentum and angular momentum. The well-known 

local forms of balance equations are given by 

 

 

   

'

' '

n n

m n m

p
             (11) 

The dot stands for the derivative of the time and the construction 

of the weak formulation of equilibrium equations is obtained by 

taking the dot product of Eq. (11) with an arbitrary admissible 

variation   , , integrating over the domain [0, L] and using 

integration by part theorem. The result is 

  0     , ; ,
int dyn ext

G v G G G  (12) 

Where Gint is elastic deform effect, Gdyn is the virtual work 

produced by the inertia of the beam and Gext is the virtual work 

of the applied load and boundary stress resultants. For the 

linearization of the weak form, see the paper of Simo [11].  

COMPUTATIONAL RESULTS 

In this section, the open source CFD program Stanford 

University Unstructured (SU2) is used as fluid solver. In FSI 

problems, the fluid structure interfaces are moving boundaries, 

making it necessary to take mesh displacements into account. In 

SU2, the Navier-Stokes equations have been in an Arbitrary 

Lagrangian-Euler framework as follows: 

    0


  


c vU
F U F U

t
  (13) 

where U is a conservative variable, 
cF is convective fluxes and 

vF is viscous fluxes.  

To verify the application of geometrically exact beam in the FSI 

simulation, a 2D flexible cantilever mounted at the downstream 

face of a 2D square cylinder is studied as shown in Fig.2. The 

geometry parameters and physical properties are listed in Table 

1. 

The problem is computed in 2D flow of which Reynolds number 

with respect to D is Re = 332. The free stream Mach number was 

0.2. For the time integration of the structural computation, the 

improved Newmark method [13] was adopted.  

 

FIGURE 2:Flexible cantilever behind a square cylinder 

Table 1: Geometry and physical attributes of the 

flexible cantilever case 

Geometry Fluid Structure 

D=1m     51.3 /u m s            62.5 10E Pa   

L=4m     3 31.18 10 /f kg m         3 31.18 10 /f kg m    

h=0.06m  41.82 10 /f kg m s           0.35   

h/L=0.015   Re=332                   f1=3.03Hz 

 
This problem was firstly proposed by Wall and Ramm [15] to 

verify their FSI coupled method. Two parameters that are usually 

used as the criterion are vibration frequency and amplitude of the 

cantilever tip. According to the previous studies, the amplitude 

ranges from D to 1.35D and the frequency is between 3.0Hz and 

3.2Hz.  

The coupling problem was computed with different time steps 

by the fixed-point method with dynamic Aitken's relaxation. The 

second-order predictor was adopted to estimate the interface 

displacements before each FSI iteration. In the simulation, the 

relaxation value increased rapidly and varied between 0.8 and 

1.0. For most of FSI iterations, 5 or 6 steps were required to 

converge. 

The time histories of the vertical displacement of cantilever tip 

and Fourier transform analysis are shown in Fig.3. For both time 

steps Δt1 = 0.005s and Δt2 = 0.0075s, the FSI iterations were 

enough to maintain the stability of the simulation. At the 

beginning of the simulation, the flow field was in a symmetric 

state and the cantilever was at rest. Due to the influence of the 

square cylinder, the flow field became unstable and the 

cantilever began to move, further affecting the flow field. After 

3 seconds, the whole system reached to a stable state of 

oscillation. The vibration frequency is 3.2Hz, close to the first 

natural frequency f1 = 3.03Hz. Different computational results of 
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previous studies are listed in Table 2. The result of this paper is 

in good agreement with those of other literatures. 

 
(a) vertical displacements 

 
               (b) FFT plots 

FIGURE:3 TIME HISTORIES OF THE VERTICAL 

DISPLACEMENTS AT THE TIP OF THE CANTILEVER 

AND FFT PLOTS 

Table 2: COMPARISON OF VIBRATION FREQUENCY 

AND MAXIMUM TIP DISPLACEMENTS 

Author Frequency(hz) Amplitude(m)* 

Wall et al.      3.08             1.31 

Sanchez et al.   3.05-3.15         1.15-1.21 

Dettmer et al.   2.96-3.31         1.1-1.4 

Habchi et al.    3.25             1.02 

this paper       3.2              1.05 

 

Time histories of tip displacements using different coupling 

methods are shown in Fig.4. For time step Δt1 = 0.005s, there is 

small difference between the result computed by loose coupling 

without predictor and that computed by strong coupling with a 

second-order predictor. However, the maximum error of 

interface displacements computed by loose coupling method 

reached the magnitude of  110O  , violating the kinematic 

continuity condition Eq.4. For time step Δt2 = 0.0075s, the 

simulation performed by loose coupling without predictor goes 

to divergence after the tip displacements become relatively large. 

On the contrary, the simulation performed by strong coupling 

with a second-order predictor maintains good stability. Thus 

loose coupling method can only solve the coupled problem with 

small enough time step, while strong coupling method is capable 

of solving the problem with a larger time step. 

 
(a)  Δt1 = 0.005s 

 
         (b) Δt2 = 0.0075s 

FIGURE:4 TIME HISTORIES OF TIP DISPLACEMENT 

USING DIFFERENT COUPLING METHOD 

Finally different relaxation methods are investigated. The 

number of each FSI iterations for dynamic Aitken's relaxation, 

fixed relaxation  0.5  and no relaxation  1.0   are 

shown in Fig.5. When the cantilever begins to vibrate, the 

methods with fixed relaxation value  0.5 1.0and    

usually requires more steps to converge than the method with 

dynamic Aitken's relaxation. Therefore, Aitken's relaxation is of 

great efficiency to speed up the FSI computation. 

 

 
(a) Number of FSI iterations 
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  (b) Residual histories at a certain step 

FIGURE:5 Comparison of dynamic Aitken's relaxation, fixed 

relaxation and none relaxation 

CONCLUSIONS 
In this paper, the computation of FSI problem is viewed as 

finding the solution of the interface Steklov-Poincare equation, 

which is solved by the fixed-point method with Aitken's dynamic 

relaxation. The coupling methods commonly used in 

computational aeroelasticity in previous researches are 

compared with the fixed-point method, which is not difficult to 

implement. Using SU2 as the fluid solver, we verify a typical FSI 

problems in transonic and low speed fields. The problem of 

vortex induced vibration of a cantilever is computed using the 

geometrically exact beam solver and proves the feasibility of 

Simo's beam theory in the analysis of FSI problems. The results 

show that the fixed-point method is of good performance in 

accelerating the convergence and also maintains stability for a 

relatively large computational time step in the FSI iterations. 
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